P.GENERAL SUPPLY 234 Moo 5 PrakasaRoad, Praksasa, Muang, Samutprakarn 10280 Thailand Tel: (662)728-5246-8 Fax: (662) 728-5249 ## Zirconium Beads: CENOBEADS ## Main advantages of using CENOBEADS - Offers the best choice for media selection and cost reduction by manufacturing and distribution both CZY and CZC , CZS - Satisfies customer needs for fine particle sizes across the whole industry (Paint / Ink / Dyes / Pigments / Magnetic Coating - Agrochemicals/ Mineral Fillers / Technical and electro ceramics etc.) - Produces the most optimal for the Horizental and Vertical mills. - Cenobeads is the most optimal media for low / high viscosity microgrinding and microdispersion due to its high density and hardness. - Minimizes the pollution emission from the media due to its high wear resistance and smooth surface. - Maximizes productivity and minimizes operational loss from media breakage during grinding /dispersion due to its high facture toughness. - Cenobeads is the most optimal shot-blasting and peening media due to its ability to resist breakage even - after long periods of peening | Physical Properties of CZY | | | |-------------------------------|--|--| | Composition | ZrO_2 (3 mo $1Y_2O_3$) | | | Specification Density | >6.02 g / cm ³ | | | Bulk Density | >3.70 g / cm ³ | | | Hardness | >1300 Hv | | | Thermal Conductivity | 2.88 W/mK | | | Thermal Expansion Coefficient | 9.60 x 10 -6 / °C (20 to 400 °C) | | | Bending Strength | 600 kgf /mm³ | | | Packing | 25 kgs | | | standard Size | 0.3 mm/0.5 mm/ 0.65 mm/0.8 mm/1 mm/ 1.2 mm/1.5 mm/2.0 mm | | | Chemical Composition of CZY | | |-----------------------------------|----------------| | Element | Specification | | ZrO ₂ HfO ₂ | 94.9 ± 0.50 | | Y ₂ O ₃ | 5.1 ± 0.30 | | Al ₂ O ₃ | 0.2 ± 0.05 | | Fe ₂ O ₃ | Less than 0.01 | | SiO ₂ | Less than 0.01 | | TiO ₂ | Less than 0.01 | | Na_2O_2 | Less than 0.01 | | MgO | Less than 0.01 |